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Abstract—State-of-the-art hardware based techniques achieve
high performance and maximize efficiency of packet classifica-
tion applications. The predominant example of these, Ternary
Content Addressable Memory (TCAM) based packet classification
systems can achieve much higher throughput than software-based
techniques. However, they suffer from high power consumption
due to the highly parallel architecture and lack high-throughput
range encoding techniques. In this paper, we propose a novel
SRAM-based packet classification architecture with packet-side
search key range encoding units, significantly reducing energy
consumption without reducing the throughput from that of TCAM
and additionally allowing range matching at wire speed.

LOP RE is a flexible packet classification system which can be
customized to the requirement of the application. Ten different
benchmarks were tested, with results showing that LOP RE

architectures provide high lookup rates and throughput, and
consume low power and energy. Compared with a TCAM-based
packet classification system (without range encoding) implemented
in 65nm CMOS technology, LOP RE can save 65% energy
consumption for the same rule set over these benchmarks.

KEYWORDS
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I. INTRODUCTION

Packet classification is a topic of great importance in such

area as network monitoring, security, routing, and quality of

service. To classify packets accurately, one must match parts

of the header of a packet with an existing table (contain-

ing rule information for routing etc.). Pure software-based

packet classification approaches are not able to satisfy the

speed requirements [1], [2] of modern network. Thus, hard-

ware specific algorithms have been created to achieve high

performance packet classification. Typically, these hardware

algorithms are implemented using Ternary Content Addressable

Memory (TCAM). TCAMs are fully associative memories that

allow searching for a particular data value. Each TCAM cell

stores a ‘1’, ‘0’ or a ‘don’t care’. Due to the parallel architec-

ture, TCAMs provide high lookup rates that each packet can be

searched within one clock cycle. However, TCAMs suffer from

(1), high power consumption as TCAM-based classification

systems simultaneously check all rules against an incoming

packet. Thus, such systems exercise every single memory cell

during every comparison; and (2), inefficiency in storing ranges

which can also lead to high power consumption [3].

Typically, a range of TCP port numbers will require par-

ticular treatment. For example, assume that all packets with

TCP source ports greater than 1023 are given a lower quality

of service. Thus the ruleset will have to store a rule (or rules)

which match the incoming packets with TCP source port greater

than 1023. While it is possible to have 1000’s of individual

rules, it is best to have a few rules with ranges attached to them.

Without range encoding, a TCP source range greater than 1023

(up to 65535), will requires at least six different prefixes [2].

Note that the part of the packet header which is matched is

called a packet search key. A packet search key can be made

up of a number of selectors (such as source TCP port number,

destination IP address etc). Thus the packet search key from

the incoming packet is matched against the standard prefixes

in the ruleset.

Any range can be converted into multiple prefixes. In the

worst case, for TCP destination and source ports, there are

two domains, thus there can be a maximum of 900 entries,

since each port is represented by 16 bits. Researchers have

proposed rule-side range encoding algorithms to improve stor-

age efficiency [4], [5], [6]. For the example in the previous

paragraph, with six prefixes (assuming that both source and

destination have the same range), there need to be 36 entries in

the rule set. If there are only two distinct ranges in the entire

rule set, we can encode the ranges [0,1023] equal to ‘0’ and

[1024,65535] equal to ‘1’. Thus one bit can represent each

TCP port address range and only a single entry is required

instead of 36. While such encoding is an efficient way of

representing the rules, the conversion of a packet header into an

encoded packet search key (to form a corresponding value to

match against the encoded rule set), can be difficult at wire

speed [3]. To achieve high performance, and reduce power

consumption, it is imperative, that a feasible way is created to

convert packet headers to encoded packet keys against encoded

rule sets. Figure 1 provides an example of an entire packet
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Fig. 1: Packet Classification System with One-Dimensional

Range Encoding

classification system with range encoding. The Rule Table

contains the encoded ranges and the Lookup Table translates

the packet header information to encoded packet search key.

For example, the TCP source value (16bits) from packet is

converted to ”111” after packet-side encoding lookup table and

will match against the encoded rules (the third entry of the Rule

Table is the reported match).

TCAM-based packet classification requires pre-processing

units to form the search key for any incoming packet. This en-

coding of the packet search key is a non-trivial task and requires

time to calculate. Although many rule-side encoding techniques

have been proposed [7], [5], barely any of the authors have

analyzed the packet-side encoding hardware to see whether

packets can be encoded without slowing the clock speed of

the system [3]. To the best of our knowledge, no TCAM-based

packet classification with range encoding technique has been

proposed that does not sacrifice throughput of the classification

system.

In this paper for the very first time, we propose a multiple-

stream SRAM-based architecture with packet-side search key

encoding called LOP-RE which achieves high performance and

consumes low power (and energy). By initially matching the

first bit of a packet search key (non-encoded or encoded) to

the first field1 of all the rules, a number of non-matching

rules are eliminated. Subsequently, the second bit of the packet

search key is matched against the second field of all rules

and further rules are eliminated. The process continues until

only one rule that continues to match remains. In addition, two

packet-side search key encoding circuits (to be able to handle

TCP destination port range and TCP source port range) are

integrated. Each packet-side search key encoding unit generates

one encoded bit per clock cycle to match against the corre-

sponding field of the rules. By creating an architecture which

simultaneously matches many packets (multiple-streams) at the

same time, and by carefully crafting the architecture to save

1The term field in this work is used to refer to the equivalent information
of a single TCAM cell. The three possible values of a TCAM cell require two
standard SRAM bits to encode (e.g., “00” for ’0’, “01” for ’1’ and “10” or
“11” for ‘don’t care’). Thus, the LOP SRAM will have the same number of
fields as an equivalent TCAM has cells.

power, we demonstrate in this paper that it is possible to exceed

the throughput of TCAM based systems while consuming less

energy.

The remainder of the paper is organized as follows. A

summary of related work is presented in Section II. In Sec-

tion III, the LOP RE approach and architecture are described.

Section IV shows the experimental setup and results. Finally,

the paper is concluded in Section V.

II. RELATED WORK

Over the last few years, several algorithms were proposed for

packet classification in both software and hardware [2]. Some

of the software-based packet classification methods include

linear searching [1], grid-of-tries [2], HiCuts [8], HyperCuts

[9], tuple space search [10], and recursive flow classification

[11]. However, none of these existing software-based packet

classification methods are capable of meeting the ultra high per-

formance requirements of modern networks. Thus, researchers

have increasingly moved their focus from the software domain

to hardware-based packet classification methods. Typically such

hardware schemes are implemented using CAMs or TCAMs.

In particular, TCAMs have been deployed in high performance

network devices, such as routers, for packet classification [7],

[12], [13], [14].

There are three main sets of methods to reduce power

consumption without sacrificing the throughput of a hardware-

based packet classification system. The first group of methods

reduces TCAM power at the circuit level [15], [16], [17],

[18], [19]; the second group of methods reduces power by

partitioning rules at the system level (thus, only a selection of

the rules are searched at one time, reducing power) [20], [14],

[21]; and the third group of methods builds novel hardware

architectures which replace CAM/TCAM with other type of

memories [22], [23]. The first category of methods mainly focus

on designing efficient gate-level architecture to reduce search-

line and match-line power consumption of TCAM. The second

category of methods, that of partitioning rules at the system-

level, is orthogonal to designing a new type of TCAM-based

packet classification system. Methods from the third category

do not use TCAMs, but use other types of memories, and

can utilize the rule partition schemes to further reduce power

consumption.

Supporting rules with ranges without efficient encoding

methods or specific range checking circuits can result in storage

inefficiency. As stated earlier, in the worst case, 900 entries

are needed in a TCAM-based packet classification system to

convert a range on both source and destination TCP ports. Che

et al. [3], [24] claimed that there are a great number of rules

with ranges and the TCAM storage efficiency will be at most

16% in real-world rule databases.

There are mainly two different categories of methods to

improve the storage efficiency for packet classification sys-

tem. The first group of methods adds customized circuits for
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range comparisons to TCAMs [25], [14]. The second group

of methods utilizes rule-side encoding algorithms to reduce

the expansion of storage entries and form an encoded search

key from each packet using pre-processing units [26], [4],

[3], [7], [27], [6], [24]. Spitznagel et al. [14] proposed an

architecture, called the Extended TCAM, which adds extra

comparison logic incorporated into the TCAM array for range

checking. Since the authors handle port ranges by extending the

TCAM functionality with embedded range comparison circuits

directly, the extra logic increased the area of the TCAM array

by 22%, which could lead to a high power consumption due

to the parallel architecture of extended TCAM. However, the

authors did not provide detailed analysis of power consumption.

Hwang et al. [25] proposed a TCAM chip which contains range

matching, each of which represent one range in the TCAM

system. The range matching devices will increase the clock

width of the TCAM chip, reducing throughput (the authors

did not provide throughput or power consumption results).

Other works focus on utilizing range encoding algorithms

to improve storage efficiency. The bit mapping based range

encoding algorithms were shown in [12], [5]. Lunteren et al.

[6] proposed P 2C-based encoding schemes, which divide over-

lapping ranges into different layers. Thus, the system is able to

encode rules using fewer bits. Chang et al. [4] proposed a Gray

Code based encoding algorithm which consumes less TCAM

entries than the bit mapping scheme and elementary interval-

based range encoding algorithms [6]. However, the scheme

proposed in [6] consumes more SRAM storage (which is used

for translating input information to the encoded packet search

key). Other encoding schemes such as [26], [27] work well in

one-dimensional packet classification problems and are hard to

be extended to multiple domains.

A key challenge for the range encoding based packet classifi-

cation scheme is that the packet search keys need to be encoded

at wire speed [3]. To achieve high throughput, (for example,

500 million searches per second (500Msps)), the searching

key units need to be able to work within two nanoseconds.

The authors in [28], [5], [6] assumed that multiple processors

and multiple memories are available for packet-side search key

encoding. However, not all the network processing units are

able to implement the packet search key encoding [3] at wire

speed. Other range encoding approaches, such as [7] did not

consider the key searching problem, only focusing on the size

of the rule set. Che et al. [3] used a TCAM coprocessor to

assist range encoding. Using several TCAM lookups for search

key encoding provided an immediate solution but reducing

throughput by a factor of 2 [3]. To the best of our knowledge, no

TCAM based approach has been shown that demonstrates the

ability to process packets using range encoding at wire speed

(with high throughput).

In this paper, we propose a low power SRAM-based packet

classification architecture with range encoding (key encoding

units) which can be used as a replacement of TCAM-based

packet classification for modern routing systems. Two ele-

mentary interval-based range encoding schemes using Buddy

Code [4] and Gray Code are mapped in this system and the

corresponding packet-side search key encoding hardware is pro-

posed which can be integrated into a novel packet classification

architecture without sacrificing throughput. Unlike all previous

TCAM approaches, the proposed technique implements packet

classification including range encoding at wire speed.

A. Contributions and Limitations

The main contributions of this paper can be summarized as

follows:

• A novel SRAM-based architecture for packet classification

which is capable of supporting packet-side encoding at

wire speed.

• A flexible packet matching scheme which can be config-

ured to achieve superior power consumption and through-

put according to the different network environment.

• Exploration of the design space of the SRAM-based

architecture.

The limitations of this work can be outlined as follows:

• LOP RE relies on heuristic pre-processing of rules and

thus has limited support for runtime updates of the rules.

Therefore, LOP RE should be used in systems which

infrequently adjust their rules.

• Area comparisons are not given in this paper. This is

due to the non-availability of comparative data for other

implementations [4], [29].

III. METHODOLOGY AND HARDWARE DESIGN

Consider a system with a packet classification module imple-

mented using TCAM. This TCAM-based packet classification

module can save storage and energy by using (rule-side) range

encoding schemes. However, it is not feasible to implement

packet-side search key encoding at wire speed without sac-

rificing throughput [3]. The LOP architecture can serve as a

replacement of The TCAM-based packet classification system

which has beeen explained in [30]. We propose an extension

of LOP scheme, called LOP RE which can support range

encoding (with packet-side key encoding units) in addition to

packet matching. Thus, a LOP RE-based module is feasible to

integrate range encoding in both rule-side and packet-side of

packet classification system.

A. LOP RE Scheme

In general, the storage efficiency and power consumption of

the hardware-based packet classification system is affected by

the rules with ranges. Using range encoding methods could

reduce the storage expansion. Increased storage is the primary

reason for high cost and increased power consumption. Chang

et al. [4] provided a detailed comparison between several dif-

ferent (rule-side) range encoding methods (e.g., range-to-prefix,

bitmapping, elementary interval-based schemes etc.) in terms
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of TCAM storage requirements in both the number of TCAM

entries and TCAM lengths. In addition, the corresponding

SRAM storage requirements for each range encoding approach

for translating TCP port addresses of incoming packets to

the encoded packet key value (which can be matched with

the encoded rules) has been compared. The authors in [4]

reported that the elementary interval-based scheme using Buddy

Code (EIEBC) and the elementary interval-based scheme using

Binary Reflected Gray Code (EIEGC) provide reasonably small

amount of TCAM storage, which counted both the number

of TCAM entries and the length of each entry. In addition,

EIEBC and EIEGC consume much less SRAM space compared

with other schemes such as Bitmapping. In this paper, we do

not propose new rule-side range encoding methods. Instead,

EIEBC and EIEGC are used to encode rule ranges in this

paper. Here, we will focus on designing corresponding packet-

side encoding hardware units (to form an encoded packet

key), and show how they can be integrated with LOP at wire

speed. The system developed here is called LOP RE. The LOP-

RE scheme is able to extract information from packets and

form the required intermediate values (encoded packet search

keys) without sacrificing throughput of the LOP-based packet

classification system.

1) Elementary Interval based encoding schemes: A range

can be represented by a set of elementary intervals. An ele-

mentary interval is the region between any two end-points of

a range. Elementary intervals cannot be overlapped and each

elementary interval shares immediately adjacent end-points. For

example, assume there are three ranges R1, R2 and R3 which

divide a range G [0,31] into six elementary intervals as shown

in Figure 2. Each elementary interval can be represented using

three bits (Buddy Code or Gray Code) for this case. Thus, R1
is converted into two prefixes (encoded ranges) 10* and 110,

R2 into 011 and 100, and R3 into 11* using Buddy Code

(asterisks represent don’t care). Similarly, R1 can be converted

into 1*1 and 110 (or, 11* and 101), R2 into *10, R3 into 10*

using Gray Code. In this case, there are a total of five 3-bits

encoded ranges, which need to be stored in rule table of the

packet classification system using EIEBC scheme, and four 3-

bits encoded ranges need to be stored using EIEGC scheme.

2) Corresponding Packet-Side Encoding Units: For illustra-

tive purposes, we will show an example to demonstrate how

one packet-side encoding unit works. Assume that the six

elementary intervals described above are used. Totally, eight

Input Packet Values (TCPdst = 17) Output Encoded Values
AddressRegions BeginValue Buddy Code Gray Code

000 0 0-0-0 0-0-0
001 0 0-0-1 0-0-1
010 0 0-1-0 0-1-1
011 7 0-1-1 0-1-0
100 13 1-0-0 1-1-0
101 16 1-0-1 1-1-1
110 20 1-1-0 1-0-1
111 26 1-1-1 1-0-0

TABLE I: A sample packet-side encoding table (encoding

lookup table) with 8 regions

regions can be represented by three bits which include the six

elementary intervals and another two invalid regions denoted

by 000 and 001 in both Buddy Code and Gray Code. The

first major column in Table I is the input of the elementary

intervals (which will be compared with the incoming packet),

which is divided into two sub-columns. The first sub-column

shows the address of regions from 000 - 111, and the second

sub-column stores the lower ends of the ranges (BeginValue)

of each elementary interval (0 for invalid regions). The second

major column is the output of the encoded packet search keys

and it is divided into two sub-columns, which represent the

Buddy Code based key addresses and Gray Code based key

addresses respectively.

In this example, Successive Approximation via Binary

Search is used, and in, every step (clock cycle), one address

from the encoding table is predicted and the referenced Begin-

Value will be compared to the required information extracted

from incoming packet (e.g., TCP destination port (TCPdst) and

TCP source port address (TCPsrc)). The prediction direction

of the binary search is determined by the output from the

previous steps. Assume there is an incoming packet with the

TCPdst value of 17. In the first step, this is compared with

the midpoint of the table (address 100) which has the value

of 13. The result of the comparison (in this case ‘1’ as 17

>13) will be used for further comparisons. Thus, the second

cycle will check against the BeginValue at address 110 which

is 20 (if the first comparison had resulted in a ‘0’, we would

test against address 010 instead). Since 17 < 20, the second

bit of the encoded key address is formed (‘0’ in Buddy Code

and ‘1’ in Gray Code). In the third step, the BeginValue 16

under 101 will be compared with 17 and since 16 > 13, the

third bit of encoded key address is reported (‘1’ in Buddy

Code and ‘0’ in Gray Code). Therefore, the entire encoded

key addresses are 101 (1-0-1) and 111 (1-1-1) for Buddy Code

and Gray Code respectively. If the total number of regions is

E (E = 8 in this case), then the encoding unit takes log E

clock cycles (the complexity of binary search is log E) to

finish a formation of an encoded packet search key address.

In a real network, TCP destination port address (TCPdst) and

TCP source port address (TCPsrc) need to be encoded and
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two packet-side encoding tables are required for each of them

respectively. The LOP-based packet classification system is

not affected by the number of elementary intervals because

LOP RE only requires one bit of the encoded key to be matched

with corresponding encoded fields of rules per step (clock

cycle). Therefore, LOP RE can handle even large packet-side

encoding tables without sacrificing throughput.

Algorithm 1 provides a pseudo code representation of the

encoding procedure described in the previous examples. Let W

be the width of the bits representing the addresses of the packet-

side encoding table (AddressRegion (Ar)) and S the number

of simultaneous packets to be processed in parallel, which will

henceforth be called the number of stages. The data variables

used in the algorithm and their purpose are listed below. Array

size is shown within square brackets as necessary.

• idle[S]: Indicates whether the referenced stage is idle. If

so, it is ready for a new packet.

• Ar[S]: The address of the current region to be examined

in the referenced encoding lookup table in a certain stage.

• PreviousAdd[S]: Stores the previous reported bits of

address of referenced encoding lookup table.

• BeginV alue[S][Ar]: The beginning values of each ele-

mentary ranges, indicates by Ar[s], as shown in Table I.

• KeyAddress BC[S](W ): Reports the calculated value of

the Buddy Coded key address for corresponding packet

processed in referenced stage.

• KeyAddress GC[S](W ): Reports the calculated value

of the Gray Coded key address for corresponding packet

processed in referenced stage.

Lines 1-2 of Algorithm 1 perform initialization of the system

indicating that all stages are idle. The loop that starts on

line 3 performs one step per stage per iteration; the informa-

tion required to be encoded will be extracted (e.g., TCPdst

value). The loop from lines 4-29 handles calculation of the

output of the encoded packet key KeyAddress BC[I] and

KeyAddress GC[I] for each stage. If a stage is initially idle,

a new packet is fetched and the variables are reset on lines 6-9.

Then, the loops from lines 10-29 perform the packet search key

encoding for the current packet value.

At each step, the packet is compared with the chosen element

from the BeginValue table. If the value from the packet is higher

or equal to the respective BeginValue lookup value from packet-

side encoding table, then the system reports region address bit

‘1’, otherwise reports ‘0’. Additionally, the corresponding bit

of the Buddy Code based key address and Gray Code based

key address are calculated based on this result and stored. The

Buddy Code encoding bit will be equal to the result of the

comparison. The Gray Code encoding requires the previous

address to calculate the correct value for the current encoded

bit. Line 11 provides an interrupt that if the referenced stage

is idle, the encoding procedure is stopped. Note that, the

stage status (idle or not) is determined by whether there are

matches reported in LOP-based system. When the matched

rules are reported such as NoMatch, Match or MultMatch, then

a new packet can start on the next step and the status of the

corresponding stage is idle.

B. Architecture Template

In this section, we will describe the architecture of LOP RE.

LOP is a basic architecture without range encoding logic,

whereas, LOP RE extends LOP to support range encoding.

LOP RE adds packet-side search key encoding units to form

the encoded packet search key at wire speed. SRAM is used

to hold the pre-defined rules (shown in 3). Encoding Lookup

Tables contain the BeginValues (e.g. for TCPdst and TCPsrc)

and perform the packet-side key encoding processing. In addi-

tion, other peripheral logic units are used to match incoming

packets to the rules. In both architectures, S number of packets

are matched in parallel using S stages of Feedback XNOR Units

(FXUs) and One Hot Detectors (OHDs).

Figure 3 represents the architecture of LOP RE with a single

stage T . Figure 4 expands upon the architecture to also show

how multiple stages are implemented 2. LOP RE has one larger

SRAM called SRAM A which stores the non-encoded fields

(such as IPdst and IPsrc). Whereas, the encoded fields (such as

2We set the LOP-based systems to compare six bits of the key at once (C
= 6).

Algorithm 1 Key Encoding Algorithm

1: for i = 0 to S − 1 do
2: idle[i] = true
3: loop

// read required information from packets
4: for i = 0 to S − 1 do
5: if idle[i] = true then // If stage is idle, get a new packet
6: packet[i] = getNewPacket();
7: Ar[i] = 2W−1

8: idle[i] = false
9: PreviousAdd[i] = ‘0’

10: for j = W − 1 to 0 do
11: if idle[i] = true then

Break
12: if packet[i] ≥ BeginV alue[i][Ar] then
13: KeyAddress BC[i](j) = ‘1’
14: if j>0 then
15: Ar[i] = Ar[i] + 2j−1

16: if PreviousAdd[i] = ‘0’ then
17: KeyAddress GC[i](j) = ‘1’
18: else
19: KeyAddress GC[i](j) = ‘0’
20: PreviousAdd[i] = ‘1’
21: else
22: KeyAddress BC[i](j) = ‘0’
23: if j>0 then
24: Ar[i] = Ar[i] − 2j−1

25: if PreviousAdd[i] = ‘0’ then
26: KeyAddress GC[i](j) = ‘0’
27: else
28: KeyAddress GC[i](j) = ‘1’
29: PreviousAdd[i] = ‘0’
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encoded value of TCPdst and TCPsrc) are duplicated and stored

into S number of smaller size of SRAMs called SRAM Bs

in LOP RE. These fields are arranged so that only one entry

within the SRAMs is read on any given step of the LOP-based

algorithm (shown in Figure [30]). Each rule is split into C

segments. N is the number of rules and M (or W ) is the

number of entries in the memory. Each comparison field in the

SRAMs have one of three possible values: ‘0’, ‘1’ or ‘x’. Thus,

each field can be represented by 2 SRAM bits and the total size

of the SRAM will be 2.C.M.N . An example of the bit mapping

for rule 1 is shown in Figure 3 for the LOP RE architecture.

Each rule has also been separated into six segments. However,

four segments are stored in SRAM A (C1-C4, and C=4) and

the other two segments (encoded values) are stored in SRAM B

(C5-C6 and C=2).

The rule set is divided into two parts stored into SRAM A and

SRAM B in LOP RE. Each entry is read, one per clock cycle,

from SRAM A and compared with corresponding bits of the

non-encoded packet key. If a new packet comes, SRAM A does

not need to be reset, the fields from the current entry continue

to compare with the corresponding bits from the next packet

key. Similarly, each entry is read, one per clock cycle from the

SRAM B of each stage and matched against the corresponding

bits of the encoded packet key (generated from packet-side

encoding lookup table). For each new packet, the address in

the SRAM B of that stage is reset to the start (the first entry

contains the first encoded fields from TCPdst and TCPsrc of

all rules) to guarantee that correct fields will be compared with

the corresponding bits of the encoded packet key. The detailed

description of FXUs and OHDs is in [30].

More stages must be added as shown in Figure 4 in order

to match S number of packets in parallel. Despite the addition

of more packets and comparison units, there is only one read

from SRAM A. However, encoded fields for each stage from

corresponding SRAM B need to be read separately. All stages

perform comparisons with their respective packet key bits or

encoded packet key bits and store their own result. To handle

the results of multiple stages, encoders (or priority encoders)

are added to handle packet classification decisions provided by

the FXUs and OHDs. Each stage has one encoder shown in

Figure 4.

IV. EXPERIMENTAL SETUP AND RESULTS

The LOP and LOP RE architectures with various configura-

tions (2, 4, 6 and 8 stages and 1-8 priority encoders) have been

implemented using VHDL and synthesized using Synopsys

Design Compiler [31] with the TSMC 65nm process library.

Three main aspects are explored: one, the relative storage

expansion ratio between non-encoded rule set and encoded

rule set; two, the power consumption per cell (field) of LOP

and LOP RE designs; three, the lookup rate and throughput

of the LOP RE scheme with different benchmarks and the

energy comparison between TCAM, LOP, and LOP RE. Ten
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rulesets and corresponding packet traces were generated using

the ClassBench tool [32] to create benchmarks. PrimeTime-

PX, part of the Synopsys tool suite, was used to estimate the

power consumption of the circuits used in this paper. ModelSim

SE 6.0 [33] was used to simulate the design under the Linux

environment.

A. Storage Expansion Ratio

Table II shows the relative storage expansion ratio between

non-encoded rules (directly translating ranges into prefixes) and

encoded rules in different benchmark using EIEBC and EIEGC

encoding. The storage expansion ratio α is defined in Equation

1.

α =
the number of expanded rules after converting ranges

the number of (original) rules
(1)

For example, Table II shows that a non-encoded range system

requires, on average, 3.25 times more rules than LOP RE using

EIEBC encoding scheme for benchmark acl1.).
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Encoding Schemes acl1 acl2 acl3 acl4 fw1 fw2 fw3 fw4 ipc1 ipc2

EIEBC 3.25 6.87 1.69 2.48 6.00 3.48 13.2 5.67 2.14 2.31
EIEGC 3.52 6.87 1.71 2.56 6.00 3.54 13.2 5.75 2.14 2.48

TABLE II: Relative Storage Expansion ratio α between non-encoded rules and encoded rules

Architecture LOP (µW/field) LOP RE (µW/field)
Encoders 2S 4S 6S 8S 2S 4S 6S 8S

1 0.697 0.791 0.885 0.979 0.891 1.353 1.815 2.276
2 0.778 0.872 0.967 1.061 0.973 1.434 1.896 2.358
3 - 0.957 1.048 1.143 - 1.516 1.978 2.439
4 - 1.035 1.129 1.224 - 1.597 2.059 2.521
5 - - 1.211 1.305 - - 2.140 2.602
6 - - 1.292 1.387 - - 2.221 2.683
7 - - - 1.468 - - - 2.765
8 - - - 1.549 - - - 2.846

TABLE III: Power Consumption per Bit (µW/field)5

B. Power Consumption Comparison

Table III shows the power consumption of LOP and

LOP RE in different configurations. The estimated power of

the hardware included SRAMs (SRAM in LOP, SRAM A and

SRAM Bs in LOP RE and additional SRAMs used to complete

the rule checking after priority encoders (or encoders)), the

Encoding Lookup Tables (each table contains 128 entries in this

experiment), FXUs, OHDs, encoders and glue logic. To be able

to compare with TCAM-based packet classification system,

power consumption in Table III is presented in µW/field. The

total power consumption can be calculated by µW/field ×

(number of rules) × (number of fields per rule).

In Table III, the first major column shows the architectures

share various number of encoders (to be able to save power

by reducing extra encoders and corresponding SRAM blocks).

The second major column shows the power consumption (per

field) in LOP for different configurations and the third major

column shows the power consumption in LOP RE. The power

consumption is less than 1.6µW/field in LOP and less than

2.9µW/field in LOP RE for all the configurations 3.

C. Throughput and Energy

Ten benchmarks have been tested in LOP RE with different

configurations shown in Table IV. In the first major column,

two sub-columns show the number of stages and the number of

shared encoders respectively. The second to eleventh columns

shows the throughput which varies in different benchmarks.

The throughput is increasing with the number of stages and

the number of shared encoders added. We test LOP RE using

3Note that, due to the very high runtime needed for power simu-
lations, we did not consider rule sets larger than 1024. However, we
can estimate the power consumption of the proposed architecture for
larger rulesets using the smaller models.

4Note that, for the same ruleset, LOP RE needs much less storage compared
with LOP. See Table II.

Stages Encoders acl1 acl2 acl3 acl4 fw1 fw2 fw3 fw4 ipc1 ipc2

2
1 92 113 167 157 151 205 140 151 157 178
2 92 130 178 162 157 205 146 151 157 189

4

1 232 194 227 221 238 227 243 243 232 238
2 232 205 354 324 308 227 292 302 232 243
3 270 232 351 351 319 400 302 308 281 378
4 308 259 362 351 319 410 308 308 286 383

6

1 238 221 237 227 238 275 243 243 243 232
2 308 383 388 383 459 529 416 448 383 302
3 378 383 481 523 475 556 448 475 383 497
4 378 389 497 529 475 556 448 475 464 502
5 416 486 502 540 481 578 464 486 475 540
6 416 513 518 594 481 583 470 486 486 540

8

1 238 221 238 227 238 275 243 243 243 232
2 362 432 459 448 457 545 535 454 464 454
3 497 594 616 599 599 653 583 589 621 610
4 513 594 670 599 632 686 589 599 632 621
5 540 616 675 637 637 686 626 605 648 632
6 540 616 680 648 643 686 626 605 648 713
7 567 616 680 648 643 707 643 610 653 713
8 567 637 686 700 648 745 664 616 653 740

TABLE IV: Throughput of LOP RE packet classification. Note that,
the throughput of 2-D-TCAM [29] is 495Msps with the lowest energy
consumption of 3.38f/cell/search.

clock speed of 1.85ns and the throughput can easily achieve

540Msps (540 million searches per second, when lookup rate

= 1) shown in Table IV.

Lookup Rate =
No. of searches

No. of clock cycles
(2)

Throughput = Lookup Rate ∗ Clock Frequency (3)

Energy per field per search =
Power/field (cell)

Throughput
(4)

Equation 4 is used to calculate energy per field per search of

LOP and LOP RE and energy per cell per search of TCAM.

Note that, LOP and TCAM systems have not been integrated

with packet-side key encoding units. The ranges of rule set

is directly converted to prefixes in LOP and TCAM systems.

Whereas, LOP RE is able to handle range encoding using

EIEBC and EIEGC schemes with corresponding packet-side

key encoding units. The total energy consumption is equal to

the product of Energy per field (cell) per search, number of

(original) rules, α and fields (cells) per rule. Note that, in

our experiment, the fields (cell) per rule for TCAM, LOP and

LOP RE is all 96 (includes IPdst, IPsrc, TCPdst and TCPsrc).

Note that, we did not compare the energy of LOP RE with

TCAM with packet-side range encoding units (TCAM RE)
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Fig. 5: Relative Energy Consumption between TCAM, LOP,

and LOP RE packet classification systems

because all current TCAM-based packet classification systems

that utilise range encoding, such as [3] did not provide enough

power and throughput information for a useful comparison to

be made.

Figure 5 plots the comparison of energy consumption

among 2-D-TCAM [29] (3.38fJ/cell/search when through-

put is 495Msps in 65nm CMOS technology), LOP ar-

chitecture (1.92fJ/field/search when average throughput is

596Msps in 65nm CMOS technology), and LOP RE architec-

ture (4.02fJ/field/search when average throughput is 599Msps

in 65nm CMOS technology) with the same ruleset. In Figure 5,

the horizontal axis labels the different benchmarks, and the

vertical axis shows the relative energy consumption of each

architecture (TCAM is set to be 1). We can see that on average,

LOP consumes 57% of the energy compared that TCAM

consumes and the energy consumption of LOP RE is only 36%

and 35% of the energy of TCAM (using EIEBC and EIEGC

encoding schemes respectively).

V. CONCLUSION

In this paper, we have proposed a novel low-power LOP RE

architecture to handle line-rate, packet-side range encoding for

packet classification. LOP-based packet classification architec-

tures are implemented to compare against the latest TCAM-

bsed approaches in 65nm CMOS technology (both power and

throughput). Results show the best energy saving compared to

the TCAM-based system is 65% for the same rule set.

The LOP RE architecture is more flexible than TCAM-

based architectures and is capable of trading off low power

consumption against high throughput by altering configurations.

More optimal LOP RE architectures can be achieved according

to different network environments. A hybrid LOP-based packet

classification can be designed according to the characteristics

of the rule set (the percentage of the rules which have ranges).

Thus, designing such optimal application specific systems can

further reduce power consumption and obtain high throughput.
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